Codetown ::: a software developer's community
Folks,
Perhaps this is old news for you, but JavaOne San Francisco registration is live. Various saving options are available leading up to the conference, and to take advantage of the current US$600 in savings registration needs to be completed by May 31st, 2015 (11:59pm PT).
I encourage you to read through the registration options by visiting the JavaOne registration site:…
Added by Michael Levin on April 24, 2015 at 11:00am — No Comments
Recommendation engines help narrow your choices to those that best meet your particular needs. In this post, we’re going to take a closer look at how all the different components of a recommendation engine work together. We’re going to use collaborative filtering on movie ratings data to recommend movies. The key components are a collaborative filtering algorithm in Apache Mahout to build and train a machine learning model,…
ContinueAdded by Carol McDonald on April 13, 2015 at 9:14am — 1 Comment
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Grab updated its internal platform to monitor Apache Kafka data quality in real time. The system uses FlinkSQL and an LLM to detect syntactic and semantic errors. It currently tracks 100+ topics, preventing invalid data from reaching downstream users. This proactive strategy aligns with industry trends to treat data streams as reliable products.
By Patrick Farry
Serving Large Language Models (LLMs) at scale is complex. Modern LLMs now exceed the memory and compute capacity of a single GPU or even a single multi-GPU node. As a result, inference workloads for 70B+, 120B+ parameter models, or pipelines with large context windows, require multi-node, distributed GPU deployments.
By Claudio Masolo
Karrot replaced its legacy recommendation system with a scalable architecture that leverages various AWS services. The company sought to address challenges related to tight coupling, limited scalability, and poor reliability in its previous solution, opting instead for a distributed, event-driven architecture built on top of scalable cloud services.
By Rafal Gancarz
Sharing your work as a software engineer inspires others, invites feedback, and fosters personal growth, Suhail Patel said at QCon London. Normalizing and owning incidents builds trust, and it supports understanding the complexities. AI enables automation but needs proper guidance, context, and security guardrails.
By Ben LindersThe article shares goals and strategies for scaling cloud and distributed applications, focusing on lessons learned from cloud migration at Chase.com at JP Morgan Chase. The discussion centers on three primary goals and the strategies addressing the goals, concluding how these approaches were achieved in practice. For those managing large-scale systems, these lessons provide valuable guidance!
By Durai Arasan
© 2025 Created by Michael Levin.
Powered by