Codetown ::: a software developer's community
Folks,
Perhaps this is old news for you, but JavaOne San Francisco registration is live. Various saving options are available leading up to the conference, and to take advantage of the current US$600 in savings registration needs to be completed by May 31st, 2015 (11:59pm PT).
I encourage you to read through the registration options by visiting the JavaOne registration site:…
Added by Michael Levin on April 24, 2015 at 11:00am — No Comments
Recommendation engines help narrow your choices to those that best meet your particular needs. In this post, we’re going to take a closer look at how all the different components of a recommendation engine work together. We’re going to use collaborative filtering on movie ratings data to recommend movies. The key components are a collaborative filtering algorithm in Apache Mahout to build and train a machine learning model,…
ContinueAdded by Carol McDonald on April 13, 2015 at 9:14am — 1 Comment
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Hugging Face has released the first candidate for Transformers v5, marking a significant evolution from v4 five years ago. The library has grown from a specialized model toolkit to a critical resource in AI development, achieving over three million installations daily and more than 1.2 billion total installs.
By Robert Krzaczyński
Now stable, Ax is an open-source platform from Meta designed to help researchers and engineers apply machine learning to complex, resource-intensive experimentation. Over the past several years, Meta has used Ax to improve AI models, accelerate machine learning research, tune production infrastructure, and more.
By Sergio De Simone
Lyft has rearchitected its machine learning platform LyftLearn into a hybrid system, moving offline workloads to AWS SageMaker while retaining Kubernetes for online model serving. Its decision to choose managed services where operational complexity was highest, while maintaining custom infrastructure where control mattered most, offers a pragmatic alternative to unified platform strategies.
By Eran Stiller
AWS Transform Custom revolutionizes code modernization with AI-driven, out-of-the-box transformations for Java, Node.js, and Python. This enterprise-focused tool accelerates application upgrades by up to 5x while learning from organizational nuances to deliver high-quality, repeatable transformations.
By Steef-Jan Wiggers
Autonomous AI agents amplify productivity but can cause severe damage without safeguards. Defend the ReAct loop—context, reasoning, and tools—through provenance gates, planner-critic separation, scoped credentials, sandboxed code, and STRIDE/MAESTRO threat modeling. With robust logging, bounded autonomy, and red-teaming, agents can deliver trustworthy productivity while minimizing risk.
By Sriram Madapusi Vasudevan
© 2025 Created by Michael Levin.
Powered by