Codetown ::: a software developer's community
23 members
40 members
13 members
28 members
47 members
Started Sep 18, 2009
Started Sep 14, 2009
Started Mar 6, 2009
Carol McDonald has not received any gifts yet
Posted on August 4, 2015 at 11:15am 0 Comments 1 Like
This post discusses building a recommendation model from movie ratings using an iterative algorithm and parallel processing with Apache Spark MLlib.
https://dzone.com/links/parallel-and-iterative-processing-for-machine-lear.html
Posted on April 13, 2015 at 9:14am 1 Comment 0 Likes
Recommendation engines help narrow your choices to those that best meet your particular needs. In this post, we’re going to take a closer look at how all the different components of a recommendation engine work together. We’re going to use collaborative filtering on movie ratings data to recommend movies. The key components are a collaborative filtering algorithm in Apache Mahout to build and train a machine learning model,…
ContinuePosted on March 30, 2009 at 10:30am 0 Comments 0 Likes
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Serving Large Language Models (LLMs) at scale is complex. Modern LLMs now exceed the memory and compute capacity of a single GPU or even a single multi-GPU node. As a result, inference workloads for 70B+, 120B+ parameter models, or pipelines with large context windows, require multi-node, distributed GPU deployments.
By Claudio Masolo
Karrot replaced its legacy recommendation system with a scalable architecture that leverages various AWS services. The company sought to address challenges related to tight coupling, limited scalability, and poor reliability in its previous solution, opting instead for a distributed, event-driven architecture built on top of scalable cloud services.
By Rafal Gancarz
Sharing your work as a software engineer inspires others, invites feedback, and fosters personal growth, Suhail Patel said at QCon London. Normalizing and owning incidents builds trust, and it supports understanding the complexities. AI enables automation but needs proper guidance, context, and security guardrails.
By Ben LindersThe article shares goals and strategies for scaling cloud and distributed applications, focusing on lessons learned from cloud migration at Chase.com at JP Morgan Chase. The discussion centers on three primary goals and the strategies addressing the goals, concluding how these approaches were achieved in practice. For those managing large-scale systems, these lessons provide valuable guidance!
By Durai Arasan
At the recent GitHub Universe 2025 developer conference, Arm unveiled the Cloud migration assistant custom agent, a tool designed to help developers automate, optimize, and accelerate the migration of their x86 cloud workflows to Arm infrastructure.
By Sergio De Simone
© 2025 Created by Michael Levin.
Powered by
Comment Wall
You need to be a member of Codetown to add comments!
Join Codetown