Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Vladimir Zakharov explains how DataFrames serve as a vital tool for data-oriented programming in the Java ecosystem. By analyzing The One Billion Row Challenge, he shares how Java frameworks can outperform Python in memory management while maintaining code readability. He discusses practical use cases for senior devs, from ad-hoc data manipulation to building scalable enterprise pipelines.
By Vladimir Zakharov
Uber transitions its in-house search indexing to OpenSearch with a pull-based ingestion framework, improving reliability, backpressure handling, and multi-region consistency for large-scale streaming data while simplifying recovery and supporting global, real-time search experiences.
By Leela Kumili
In this article, the author argues that infrastructure and compute limitations can drive innovation. It demonstrates how smaller, efficient models, synthetic data generation, and disciplined engineering enable the creation of impactful LLM-based AI systems despite severe resource constraints.
By Olimpiu PopIn this episode, Thomas Betts chats with Madelyn Olson, a maintainer of the Valkey project and a Principal Software Development Engineer at Amazon ElastiCache and Amazon MemoryDB. The conversation covers how Valkey started as an open source fork of Redis and how the maintainers optimized the memory usage and improved throughput.
By Madelyn Olson
The latest release of Xcode, Xcode 26.3, extends support for coding agents, such as Anthropic's Claude Agent and OpenAI's Codex, helping developers tackle complex tasks and improve their productivity.
By Sergio De SimoneSwitch to the Mobile Optimized View
© 2026 Created by Michael Levin.
Powered by