Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Rachael Wonnacott explains why DevEx is a lever, not the destination. Discover the risks of treating your platform as an isolated product and learn how to balance trade-offs between technical expertise, productivity, and business impact for achieving enterprise-scale success.
By Rachael Wonnacott
Buoyant, the company behind the open-source Linkerd service mesh, announced that Linkerd now supports the Model Context Protocol (MCP), making it the first service mesh to natively manage, secure, and observe agentic AI traffic in Kubernetes environments.
By Craig RisiVivek Yadav, an engineering manager from Stripe, shares his experience in building a testing system based on multi-year worth of data. He shares insights into why Apache Spark was the choice for creating such a system and how it fits in the "traditional" engineering practices.
By Vivek Yadav
Engineering Manager Nishant Lakshmikanth showcased LinkedIn's transformation at QCon SF 2025, detailing a shift from legacy batch-based systems to a real-time architecture. By decoupling recommendations and leveraging dynamic scoring techniques, LinkedIn achieved a 90% reduction in offline costs, enhanced session-level freshness, and improved member engagement while future-proofing its platform.
By Steef-Jan Wiggers
Meta has released SAM 3, the latest version of its Segment Anything Model and the most substantial update to the project since its initial launch. Built to provide more stable and context-aware segmentation, the model offers improvements in accuracy, boundary quality, and robustness to real-world scenes, aiming to make segmentation more reliable across research and production systems.
By Robert KrzaczyńskiSwitch to the Mobile Optimized View
© 2025 Created by Michael Levin.
Powered by