Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

LangGrant has launched the LEDGE MCP Server, a new enterprise platform designed to let large language models reason across complex database environments without directly accessing or exposing underlying data.
By Craig Risi
Google has released Conductor, a new preview extension for Gemini CLI that introduces a structured, context-driven approach to AI-assisted software development. The extension is designed to address a common limitation of chat-based coding tools: the loss of project context across sessions.
By Robert Krzaczyński
Microsoft's TypeScript 7, codenamed Project Corsa, transforms the compiler with a complete rewrite in Go, achieving up to 10x faster builds and reduced memory usage. With strict mode enabled by default, this update enhances type safety while maintaining compatibility. Developers are excited about the performance gains and improved efficiency for large codebases.
By Daniel Curtis
Hugo Marques explains how to navigate Java concurrency at scale, moving beyond simple frameworks to solve high-throughput IO challenges. Drawing from real-world Netflix projects, he discusses the pitfalls of nested parallel streams, managing backpressure with semaphores, and the shift from bounded executors to Virtual Threads. Learn to protect downstream services while maximizing JVM performance.
By Hugo Marques
Spec-Driven Development inverts traditional architecture by making specifications executable and authoritative. It transforms declared intent into validated code through AI generation and provides architectural determinism. It eliminates drift through continuous enforcement, but demands new engineering discipline in schema design and contract-first reasoning.
By Leigh Griffin, Ray Carroll
© 2026 Created by Michael Levin.
Powered by