Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

CameraX 1.5 introduces support for capturing slow-motion and high frame-rate videos as well as unprocessed, uncompressed still images. These capabilities are enabled by the new SessionConfig API, which streamlines camera setup and configuration.
By Sergio De Simone
At QCon SF 2025, Dr. Nicole Forsgren highlighted how AI accelerates code generation but reveals deployment bottlenecks, urging a strategic pivot to optimizing Developer Experience (DevEx). With 31% of developer time lost to friction, focusing on effective feedback loops, flow state, and cognitive load management is vital for competitive survival and retention.
By Steef-Jan Wiggers
IBM recently announced the Granite 4.0 family of small language models. The model family aims to deliver faster speeds and significantly lower operational costs at acceptable accuracy vs. larger models. Granite 4.0 features a new hybrid Mamba/transformer architecture that largely reduces memory requirements, enabling Granite to run on significantly cheaper GPUs and at significantly reduced costs.
By Bruno Couriol
This week's Java roundup for November 10th, 2025, features news highlighting: OpenJDK JEPs targeted for JDK 26; the GA release of Spring Framework 7.0; point releases of Spring Data, Spring AI, JobRunr and Jox; the November 2025 edition of Payara Platform; the fifth release candidate of Maven 4.0; and a maintenance release of Micronaut.
By Michael Redlich
Generative AI technologies need to support new workloads, traffic patterns, and infrastructure demands and require a new set of tools for the age of GenAI. Erica Hughberg from Tetrate and Alexa Griffith from Bloomberg spoke last week at KubeCon + CloudNativeCon North America 2025 Conference about what it takes to build GenAI platforms capable of serving model inference at scale.
By Srini Penchikala
© 2025 Created by Michael Levin.
Powered by