Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

LocalStack has recently announced changes to the delivery of its AWS Cloud emulators, dropping the popular open source Community Edition, and creating a single image that requires registration. Projects that currently pull the latest community image will need to update their workflows.
By Renato Losio
In an effort to probe the limits of autonomous software development Anthropic used sixteen Claude Opus 4.6 AI agents to build a Rust-based C compiler from scratch. Working in parallel on a shared repository, the agents coordinated their changes and ultimately produced a compiler capable of building the Linux 6.9 kernel across x86, ARM, and RISC-V, as well as many other open-source projects.
By Sergio De Simone
A recent article by Google Cloud SREs describes how they use the AI-powered Gemini CLI internally to resolve real-world outages. This approach improves reliability in critical infrastructure operations and reduces incident response time by integrating intelligent reasoning directly into the terminal-based operational tools.
By Renato Losio
Google has overhauled Firestore’s query engine, introducing "Pipeline operations" that enable complex server-side aggregations and array unnesting. The update shifts Firestore Enterprise toward an optional indexing model, allowing architects to prioritize write speed and lower costs. While it brings parity with MongoDB-style aggregations, the preview currently lacks real-time and emulator support.
By Steef-Jan Wiggers
Introducing Nuxt Studio: the ultimate open-source content management solution for Nuxt websites, offering a powerful self-hosted module for complete control over your content. With an intuitive visual editor, real-time previews, and seamless Git integration, elevate your development workflow while bridging the gap for content creators. Unleash your team's potential today!
By Daniel Curtis
© 2026 Created by Michael Levin.
Powered by