Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Nuxt 4.2 elevates the developer experience with native abort control for data fetching, improved error handling, and experimental TypeScript support. With a 39% reduction in bundle sizes and a streamlined app directory, this release enhances performance and project organization, positioning Nuxt as a leading choice for full-stack web applications built on Vue.js.
By Daniel Curtis
OpenAI and Anthropic have donated their AGENTS.md and Model Context Protocol projects to the Agentic AI Foundation (AAIF), a new directed fund under the Linux Foundation. Block contributed their agent framework, goose, as another founding project, and several other tech companies have joined as Platinum members.
By Anthony Alford
Pinecone recently announced the public preview of Dedicated Read Nodes (DRN), a new capacity mode for its vector database designed to deliver predictable performance and cost at scale for high-throughput applications such as billion-vector semantic search, recommendation systems, and mission-critical AI services.
By Craig Risi
In streaming, the challenge is immediate: customers are watching TV right now, not planning to watch it tomorrow. When systems fail during prime time, there is no recovery window; viewers leave and may not return. One and a half years ago, at ProSiebenSat.1 Media SE, we faced the challenge of scaling streaming applications for international users.
By Daniele Frasca
Target has deployed GRAM, a GenAI-powered accessory recommendation system for the Home category, using large language models to prioritize product attributes and capture aesthetic cohesion. The system helps shoppers find compatible accessories, integrates human-in-the-loop curation, and achieved measurable improvements in engagement and conversion.
By Leela Kumili
© 2025 Created by Michael Levin.
Powered by