Codetown ::: a software developer's community
Part 1: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Part 2: https://codetown.com/group/kotlin/forum/topics/kotlin-thursdays-ima...
Welcome to Kotlin Thursdays! Last week, we figured out how to write primitive filters and apply them to our images with the or function. This week, we look at refactoring with higher-order functions.
Think of these resources as supplemental if you happen to be more curious. We always encourage looking into documentation for things you use!
We could continue to write individual functions that feeds 2 images and a particular function, but in Kotlin, we have the ability to use a single function that accepts 2 images and a function with the help of higher order functions. Below, you can see how similar our orFilter function and makeDuller function is.
In programming, programs may take data as parameters and pass those parameters into the function to return a different output or alter the behavior of a program. Kotlin is a functional language, and one characteristic of a functional language is that functions are also able to treat functions as data. You can pass a function as a parameter, which is really powerful!
A higher-order function is a function that may take functions as parameters. You can pass a function with double-colon (::). Double-colon (::) is used to get function (callable) reference in Kotlin.
Ruby facilitates higher order functions with yield, which involves passing a block to a method.
Like Ruby, Kotlin treats functions as first-class citizens, which is a pillar of functional programming. In Kotlin, the equivalent of block code is known as lambda functions, indicated by the pattern:
Instead of passing the object as an argument, you invoke the lambda variable as it if were an extension function. Haskell also has higher order functions which can designate the kinds of parameters a function may take within a function.
In this case, we are going to work with a general function, as opposed to an extension function that is invoked with a qualifer.
The function we write will take a filter function and 2 pixelReaders. Our function parameter, in particular, will only accept functions that take 2 Color parameters and returns a Color.
So here, the input function that accepts the 2 parameters is the receiver type, the output Color receiver object.
fun applyFilter (filter: (Color, Color) --> Color, a: PixelReader, b: PixelReader): PixelWriter {
for (x in 0 until width) {
for (y in 0 until height) {
resultWriter.setColor(x, y, filter(a.getColor(x, y), b.getColor(x, y))
}
}
return resultWriter
}
I hope you all had fun learning a little bit about image processing! Keep exploring and creating new image filters and maybe even as a challenge, think about how you might implement an RGB system to create image filters for colors. Until next time :)
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Rspack 1.7 has launched, enhancing performance and plugin compatibility as it prepares for a major version transition. Key features include improved SWC plugin compatibility, native asset importing as bytes, and default lazy compilation for dynamic modules. With performance gains reported up to 80%, Rspack offers a faster, Rust-based alternative to webpack while maintaining API compatibility.
By Daniel Curtis
Laurent Doguin shares why Wasm’s cold-start performance and security model make it the ideal FaaS runtime. He discusses the WebAssembly Component Model for polyglot interoperability and explains how to build distributed, provider-based architectures using CNCF wasmCloud and NATS. Ideal for architects looking to scale "scale-to-zero" infrastructure without the overhead of heavy containers.
By Laurent Doguin
This article introduces a reinforcement learning (RL) approach grounded in Apache Spark that enables distributed computing systems to learn optimal configurations autonomously, much like an apprentice engineer who learns by doing. The author also implements a lightweight agent as a driver-side component that uses RL to choose configuration settings before a job runs.
By Hina GandhiIn this podcast, Shane Hastie, Lead Editor for Culture & Methods, spoke to Trisha Ballakur about transitioning from coder to startup CEO, balancing technical leadership with business development, and avoiding burnout on the journey.
By Trisha Ballakur
Microsoft and GitHub have expanded the Copilot ecosystem with the first .NET-focused GitHub Copilot custom agents, designed to improve productivity and code quality for C# and Windows Forms developers. The announcement, part of the broader Copilot custom agents’ rollout, introduces two purpose-built agents: C# Expert and WinForms Expert in the form of agent instruction Markdown files.
By Edin Kapić
© 2026 Created by Michael Levin.
Powered by