Codetown ::: a software developer's community
I don't clearly catch the difference betwenn these two concept. Someone told me that the essential différence is that the cloud computing give you a large space of storage and the grig give more advantages than storage, we can profit to much power with this last.
Does any one know more clearly these two concept; and tell us?
Tags:
I don't claim to be the expert, but the difference is (I think) in use.
Grid represents a scalable framework. You write your algorithm and your code and use as much computing power as you wallet can afford. (Useful as some work can be highly parallelizable) .
Cloud computing offers storage (true) but it's also represents the applications as well. Ideally with cloud computing, you don't need to have certain applications on your desktop - as long as you can hit the cloud, you can get, update, and use your data.
Thanks thomas;
What I got :
Grid - much computing power and can be highly parallelizable
Cloud - Storage and dont need to have certain applications on your desktop ( that's just like server application?)
Someone can tell us more?
I think if you look at the history, you will understand some difference.
In my own experience, the grid began with Oracle using it as a type of metadatabase, which would point to multiple databases residing on different but uniform hardware systems. So if a company had multiple unix boxes and needed to increase the size of their database, instead of purchasing additional hardware they could implement the grid database and combine their multiple unix servers into one database resource.
Cloud is much more in terms of it offering not only a database, but also an entire server including the operating system.
The cloud exposes an operating system, whereas a grid exposes a database.
But I am no buzz word expert so I might be wrong.
I just talked to a buddy about this, essentially the Oracle Grid product is differant because it runs the DB in memory. So access times are a lot quicker. I don't think it is really a matter of Vs. so much as Grid computing is a way to handle db transactions in a faster way.
He said their grid servers had something like 72gbs of ram. Freaking crazy
Please Bradley, wha do you think about Jackie's reaction?
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Open-source AI coding tool OpenCode features a native terminal-based UI, multi-session support, and compatibility with over 75 models, including Claude, OpenAI, Gemini, and local models. In addition to its CLI tool, OpenCode is also available as a desktop app and and an IDE extension for VS Code, Cursor, and other tools.
By Sergio De Simone
Teams rely on strong unit and integration tests instead of end-to-end tests. Using TDD, pair programming, and good design, they ship small changes often, test in production for real feedback, and use feature toggles to reduce risk, Ola Hast and Asgaut Mjølne Söderbom mentioned in their talk about continuous delivery with pair programming.
By Ben Linders
Google Cloud is bridging a critical gap for enterprises by introducing a gRPC transport package for the Model Context Protocol (MCP), enhancing integration for businesses already using gRPC. This game-changer reduces development friction, ensuring AI agents seamlessly connect with existing services while boosting performance and efficiency. Join the evolving landscape of AI integration!
By Steef-Jan Wiggers
LinkedIn's engineering team successfully upgraded its legacy ZooKeeper service discovery platform to enhance scalability and performance. By leveraging Apache Kafka and the xDS protocol, the new architecture enables eventual consistency, supports multiple languages, and allows migration without downtime. Post-upgrade, latency vastly improved, facilitating hundreds of thousands of app instances.
By Patrick Farry
Sarah Usher discusses the architectural "breaking point" where warehouses like BigQuery struggle with latency and cost. She explains the necessity of a conceptual data lifecycle (Raw, Curated, Use Case) to regain control over lineage and innovation. She shares practical strategies to design a single source of truth that empowers both ML teams and analytics without bottlenecking scale.
By Sarah Usher
© 2026 Created by Michael Levin.
Powered by