OrlandoJUG - Predicting the Stock Market with Genetic Programming:

Event Details

OrlandoJUG - Predicting the Stock Market with Genetic Programming:

Time: March 24, 2016 from 6pm to 8pm
Location: PowerDMS @ Church St Station
Street: PowerDMS, 101 S Garland Ave #300
City/Town: Orlando, FL 32801
Website or Map: http://www.orlandojug.com
Phone: 321-252-9322
Event Type: meeting
Organized By: Michael Levin
Latest Activity: Mar 21, 2016

Export to Outlook or iCal (.ics)

Event Description

Hello OrlandoJUG! 

This month we have Dave Moskowitz in from Sarasota for a fascinating talk. 

Here's the abstract for the presentation.  There is a possibility of massive amounts of pizza! 

Genetic programming (GP) is a class of nature-inspired AI algorithms that aims to automatically generate a population of computer programs to solve a target problem where the solution is unknown. By defining a fitness function (a high-level statement of the problem) and applying principles of Darwinian evolution (mating, survival of the fittest), GP breeds a population of computer programs that achieve a higher level of fitness and come closer to an optimal solution over time.

GP is most applicable to problems without deterministic solution. An example of such a problem is stock market prediction. There is no canonical theory on how to "beat the market". The most widely accepted belief regarding this question is stated in the efficient market hypothesis (EMH), which holds that no method can consistently beat the overall market, However, there is conflicting research from both the economic and AI communities regarding the validity of this hypothesis. While most research appears to deny the possibility of consistently beating the market after factoring in transaction costs, recent no transaction cost trading platforms, such as Robinhood, as well as more powerful and available data processing capabilities, make beating the market more in reach than ever.

The presentation will begin with an introduction to genetic programming, focusing on the more common tree-based (LISP) representation. Other approaches to GP, as well differences between genetic programming and genetic algorithms will also be discussed.

A Java based GP system, developed by the speaker, will be used to illustrate some basic GP examples. Finally, the  genetic programming algorithm will be run on the S&P 500 index using current market conditions to see what it predicts for the immediate future.

This talk will convince you that genetic programming is essentially an approachable technique that can be applied towards many problems in the area of numeric optimization, prediction, design, or just about anything else you can do in a computer program.

About the Speaker:

David Moskowitz is a Market Data Architect at Ned Davis Research in Venice Florida where he develops and maintains web and REST based financial data delivery systems.  He is currently a PhD candidate in Computer Science at Nova Southeastern University and is also the former chairman of the Sarasota Java Users Group.

As always, I'll remind you to please don't forget to drop by OrlandoJUG Town here at Codetown. The URL is www.orlandojug.com and it points to www.codetown.com/group/orlandojug. 

Feel free to invite a friend. Please RSVP so I'll know how much pizza to order. 

Comment Wall

Comment

RSVP for OrlandoJUG - Predicting the Stock Market with Genetic Programming: to add comments!

Join Codetown

Attending (5)

Not Attending (1)

Happy 10th year, JCertif!

Notes

Welcome to Codetown!

Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.

When you create a profile for yourself you get a personal page automatically. That's where you can be creative and do your own thing. People who want to get to know you will click on your name or picture and…
Continue

Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.

Looking for Jobs or Staff?

Check out the Codetown Jobs group.

 

Enjoy the site? Support Codetown with your donation.



InfoQ Reading List

Podcast: Scaling Systems, Companies, and Careers with Suhail Patel

In this episode, Suhail Patel joins Thomas Betts for a discussion about growing yourself as your company grows. When he started at Monzo, Patel was one of four engineers on the then new platform team–there are now over 100 people. The conversation covers how to thrive when the company and the systems you’re building are going through major growth.

By Suhail Patel

Hugging Face Releases FinePDFs: A 3-Trillion-Token Dataset Built from PDFs

Hugging Face has unveiled FinePDFs, the largest publicly available corpus built entirely from PDFs. The dataset spans 475 million documents in 1,733 languages, totaling roughly 3 trillion tokens. At 3.65 terabytes in size, FinePDFs introduces a new dimension to open training datasets by tapping into a resource long considered too complex and expensive to process.

By Robert Krzaczyński

Java News Roundup: OpenJDK JEPs, TornadoVM, Spring Framework, Open Liberty, JBang

This week's Java roundup for September 8th, 2025, features news highlighting: OpenJDK JEPs targeted for JDK 26 and new candidates; first integration of GPULlama3.java with LangChain4j; milestone releases of Spring Framework, Spring Data and Spring AI; Spring Authorization Server moving to Spring Security; the September 2025 edition of Open Liberty; and a point release of JBang.

By Michael Redlich

Cloudflare Introduces Automated Scoring for Shadow AI Risk Assessment

During AI Week 2025, Cloudflare announced Application Confidence Scores, an automated assessment system that is designed to help organizations evaluate the safety and security of third-party AI applications at scale.

By Renato Losio

Vercel Introduces AI Gateway for Multi-Model Integration

Vercel has rolled out the AI Gateway for production workloads. The service provides a single API endpoint for accessing a wide range of large language and generative models, aiming to simplify integration and management for developers.

By Daniel Dominguez

© 2025   Created by Michael Levin.   Powered by

Badges  |  Report an Issue  |  Terms of Service