Codetown ::: a software developer's community

Time: July 8, 2015 from 6pm to 8pm
Location: Availity
Street: 10752 Deerwood Park Blvd S, Ste 110
City/Town: Jacksonville FL 32256
Website or Map: http://maps.google.com/maps?q…
Phone: Eyalwir@ yahoo.com
Event Type: meeting
Organized By: Eyal Wir
Latest Activity: Jul 7, 2015
Introduction to Spark
Presented by Carol McDonald, MapR Technologies
Apache Spark is a fast and general engine for large-scale data processing. In contrast to Hadoop's two-stage disk-based MapReduce paradigm, Spark's in-memory primitives provide performance up to 100 times faster for certain applications.
The Spark software stack includes a core data-proccessing engine, an interface for interactive querying, Sparkstreaming for streaming data analysis, and growing libraries for machine-learning and graph analysis. Spark is quickly establishing itself as a leading environment for doing fast, iterative in-memory and streaming analysis.
This talk will give an introduction the Spark stack, explain how Spark has lighting fast results, and how it complements Apache Hadoop.
Please RSVP!
http://www.meetup.com/Jacksonville-JAVA-User-Group-JaxJUG/events/223679551/
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Kyra Mozley discusses the evolution of autonomous vehicle perception, moving beyond expensive manual labeling to an embedding-first architecture. She explains how to leverage foundation models like CLIP and SAM for auto-labeling, RAG-inspired search, and few-shot adapters. This talk provides engineering leaders a blueprint for building modular, scalable vision systems that thrive on edge cases.
By Kyra Mozley
In this series, we examine what happens after the proof of concept and how AI becomes part of the software delivery pipeline. As AI transitions from proof of concept to production, teams are discovering that the challenge extends beyond model performance to include architecture, process, and accountability. This transition is redefining what constitutes good software engineering.
By Arthur Casals
To prevent agents from obeying malicious instructions hidden in external data, all text entering an agent's context must be treated as untrusted, says Niv Rabin, principal software architect at AI-security firm CyberArk. His team developed an approach based on instruction detection and history-aware validation to protect against both malicious input data and context-history poisoning.
By Sergio De Simone
Introducing Claude Cowork: Anthropic's groundbreaking AI agent revolutionizing file management on macOS. With advanced automation capabilities, it enhances document processing, organizes files, and executes multi-step workflows. Users must be cautious of backup needs due to recent issues. Explore its potential for efficient office solutions while ensuring data integrity.
By Andrew Hoblitzell
Meta has revealed how it scales its Privacy-Aware Infrastructure (PAI) to support generative AI development while enforcing privacy across complex data flows. Using large-scale lineage tracking, PrivacyLib instrumentation, and runtime policy controls, the system enables consistent privacy enforcement for AI workloads like Meta AI glasses without introducing manual bottlenecks.
By Leela Kumili
© 2026 Created by Michael Levin.
Powered by
RSVP for jaxjug July Meeting - Introduction to Spark to add comments!
Join Codetown