Akeleba vonvon
  • Male
Share on Facebook MySpace
  • Blog Posts
  • Discussions
  • Events
  • Groups
  • Photos
  • Photo Albums
  • Videos

Gifts Received

Gift

Akeleba vonvon has not received any gifts yet

Give a Gift

 

Akeleba vonvon's Page

Profile Information

How did you hear about Codetown?
Partir site de Congo Jug
What are your main interests in software development?
J'aimerai de venir un expert en Java en Oracle
Anything else you'd like to add? Where do you live? (optional!)
à Kinshasa

Comment Wall (2 comments)

You need to be a member of Codetown to add comments!

Join Codetown

At 11:07am on January 24, 2013, Michael Levin said…

Assurez-vous de télécharger une photo de profil et de remplir autant de détails dans votre profil que vous le souhaitez. S'il vous plaît inviter vos amis à l'aide de la fonction d'invitation Codetown.

At 11:05am on January 24, 2013, Michael Levin said…

Bonjour Akeleba, et bienvenue sur codetown! Maintenant, vous souhaitez rejoindre tous les groupes d'intérêt que vous. Nous sommes impatients de lire votre premier blog! Tous les meilleurs, Michael

 
 
 

Happy 10th year, JCertif!

Notes

Welcome to Codetown!

Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.

When you create a profile for yourself you get a personal page automatically. That's where you can be creative and do your own thing. People who want to get to know you will click on your name or picture and…
Continue

Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.

Looking for Jobs or Staff?

Check out the Codetown Jobs group.

 

Enjoy the site? Support Codetown with your donation.



InfoQ Reading List

Article Series - AI Assisted Development: Real World Patterns, Pitfalls, and Production Readiness

In this series, we examine what happens after the proof of concept and how AI becomes part of the software delivery pipeline. As AI transitions from proof of concept to production, teams are discovering that the challenge extends beyond model performance to include architecture, process, and accountability. This transition is redefining what constitutes good software engineering.

By Arthur Casals

How CyberArk Protects AI Agents with Instruction Detectors and History-Aware Validation

To prevent agents from obeying malicious instructions hidden in external data, all text entering an agent's context must be treated as untrusted, says Niv Rabin, principal software architect at AI-security firm CyberArk. His team developed an approach based on instruction detection and history-aware validation to protect against both malicious input data and context-history poisoning.

By Sergio De Simone

Anthropic announces Claude CoWork

Introducing Claude Cowork: Anthropic's groundbreaking AI agent revolutionizing file management on macOS. With advanced automation capabilities, it enhances document processing, organizes files, and executes multi-step workflows. Users must be cautious of backup needs due to recent issues. Explore its potential for efficient office solutions while ensuring data integrity.

By Andrew Hoblitzell

Tracking and Controlling Data Flows at Scale in GenAI: Meta’s Privacy-Aware Infrastructure

Meta has revealed how it scales its Privacy-Aware Infrastructure (PAI) to support generative AI development while enforcing privacy across complex data flows. Using large-scale lineage tracking, PrivacyLib instrumentation, and runtime policy controls, the system enables consistent privacy enforcement for AI workloads like Meta AI glasses without introducing manual bottlenecks.

By Leela Kumili

MIT's Recursive Language Models Improve Performance on Long-Context Tasks

Researchers at MIT's CSAIL published a design for Recursive Language Models (RLM), a technique for improving LLM performance on long-context tasks. RLMs use a programming environment to recursively decompose and process inputs, and can handle prompts up to 100x longer than base LLMs.

By Anthony Alford

© 2026   Created by Michael Levin.   Powered by

Badges  |  Report an Issue  |  Terms of Service