Resources

Introduction

Last week, we went over higher order functions in Kotlin. We learned how higher order functions can accept functions as parameters and are also able to return functions. This week, we will take a look at lambdas. Lambdas are another type of function and they are very popular in the functional programming world.



Logic & Data

Computer programs are made up of two parts: logic and data. Usually, logic is described in functions and data is passed to those functions. The functions do things with the data, and return a result. When we write a function we would typically create a named function. As we saw last week, this is a typical named function:

fun hello(name: String): String {
return "Hello, $name"
}

Then you can call this function:

fun main() {
println(hello("Matt"))
}

Which gives us the result:

Hello, Matt

Functions as Data

There is a concept in the functional programming world where functions are treated as data. Lambdas (functions as data) can do the same thing as named functions, but with lambdas, the content of a given function can be passed directly into other functions. A lambda can also be assigned to a variable as though it were just a value.

Lambda Syntax

Lambdas are similar to named functions but lambdas do not have a name and the lambda syntax looks a little different. Whereas a function in Kotlin would look like this:

fun hello() {
return "Hello World"
}

The lambda expression would look like this:

{ "Hello World" }

Here is an example with a parameter:

fun(name: String) {
return "Hello, ${name}"
}

The lambda version:

{ name: String -> "Hello, $name" }

You can call the lambda by passing the parameter to it in parentheses after the last curly brace:

{ name: String -> "Hello, $name" }("Matt")

It’s also possible to assign a lambda to a variable:

val hello = { name: String -> "Hello, $name" }

You can then call the variable the lambda has been assigned to, just as if it was a named function:

hello("Matt")

Lambdas provide us with a convenient way to pass logic into other functions without having to define that logic in a named function. This is very useful when processing lists or arrays of data. We’ll take a look at processing lists with lambdas in the next post!

Views: 148

Happy 10th year, JCertif!

Notes

Welcome to Codetown!

Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.

When you create a profile for yourself you get a personal page automatically. That's where you can be creative and do your own thing. People who want to get to know you will click on your name or picture and…
Continue

Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.

Looking for Jobs or Staff?

Check out the Codetown Jobs group.

 

Enjoy the site? Support Codetown with your donation.



InfoQ Reading List

Swiggy Rolls Out Hermes V3: From Text-to-SQL to Conversational AI

Swiggy has released Hermes V3, a GenAI-powered text-to-SQL assistant that enables employees to query data in plain English. The Slack-native system combines vector retrieval, conversational memory, agentic orchestration, and explainability to improve SQL accuracy and support multi-turn analytical queries.

By Leela Kumili

Amazon S3 Vectors Reaches GA, Introducing "Storage-First" Architecture for RAG

AWS has announced the general availability of Amazon S3 Vectors, increasing per-index capacity forty-fold to 2 billion vectors. By natively integrating vector search into the S3 storage engine, the service introduces a "Storage-First" architecture that decouples compute from storage, reducing total cost of ownership by up to 90% for large-scale RAG workloads.

By Steef-Jan Wiggers

Presentation: From Confusion to Clarity: Advanced Observability Strategies for Media Workflows at Netflix

Naveen Mareddy and Sujana Sooreddy discuss the evolution of Netflix’s media processing observability, moving from monolithic tracing to a high-cardinality analytics platform. They explain how to handle "trace explosion" using stream processing and a "request-first" tree visualization, and share how to transform raw spans into actionable business intelligence.

By Sujana Sooreddy, Naveen Mareddy

Article: The Architect’s Dilemma: Choose a Proven Path or Pave Your Own Way?

Software platforms and frameworks act like paved roads: they accelerate MVP/MVA delivery but impose decisions teams may not accept. If the paved roads don't reach your destination, then you may have to take an exit ramp and build your own solution. Experiments are necessary to determine which path meets your specific needs.

By Pierre Pureur, Kurt Bittner

Things Software Developers Think They Don’t Need to Care about, But Can Impact Their Job

Holly Cummins gave a keynote at Goto Copenhagen where she urged developers to care about overlooked issues that shape their work. She warned of unintended consequences of design decisions, promoted systems thinking and statistical literacy, stressed mastering concurrency as hardware evolves beyond Moore’s Law, and mentioned the impact of AI on the job market.

By Ben Linders

© 2026   Created by Michael Levin.   Powered by

Badges  |  Report an Issue  |  Terms of Service