Codetown ::: a software developer's community

ResourcesLast week, we went over higher order functions in Kotlin. We learned how higher order functions can accept functions as parameters and are also able to return functions. This week, we will take a look at lambdas. Lambdas are another type of function and they are very popular in the functional programming world.
Computer programs are made up of two parts: logic and data. Usually, logic is described in functions and data is passed to those functions. The functions do things with the data, and return a result. When we write a function we would typically create a named function. As we saw last week, this is a typical named function:
fun hello(name: String): String {
return "Hello, $name"
}
Then you can call this function:
fun main() {
println(hello("Matt"))
}
Which gives us the result:
Hello, Matt
Functions as DataThere is a concept in the functional programming world where functions are treated as data. Lambdas (functions as data) can do the same thing as named functions, but with lambdas, the content of a given function can be passed directly into other functions. A lambda can also be assigned to a variable as though it were just a value.
Lambda SyntaxLambdas are similar to named functions but lambdas do not have a name and the lambda syntax looks a little different. Whereas a function in Kotlin would look like this:
fun hello() {
return "Hello World"
}
The lambda expression would look like this:
{ "Hello World" }
Here is an example with a parameter:
fun(name: String) {
return "Hello, ${name}"
}
The lambda version:
{ name: String -> "Hello, $name" }
You can call the lambda by passing the parameter to it in parentheses after the last curly brace:
{ name: String -> "Hello, $name" }("Matt")
It’s also possible to assign a lambda to a variable:
val hello = { name: String -> "Hello, $name" }
You can then call the variable the lambda has been assigned to, just as if it was a named function:
hello("Matt")
Lambdas provide us with a convenient way to pass logic into other functions without having to define that logic in a named function. This is very useful when processing lists or arrays of data. We’ll take a look at processing lists with lambdas in the next post!
Tags:
Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.
Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.
Check out the Codetown Jobs group.

Nuxt 4.2 elevates the developer experience with native abort control for data fetching, improved error handling, and experimental TypeScript support. With a 39% reduction in bundle sizes and a streamlined app directory, this release enhances performance and project organization, positioning Nuxt as a leading choice for full-stack web applications built on Vue.js.
By Daniel Curtis
OpenAI and Anthropic have donated their AGENTS.md and Model Context Protocol projects to the Agentic AI Foundation (AAIF), a new directed fund under the Linux Foundation. Block contributed their agent framework, goose, as another founding project, and several other tech companies have joined as Platinum members.
By Anthony Alford
Pinecone recently announced the public preview of Dedicated Read Nodes (DRN), a new capacity mode for its vector database designed to deliver predictable performance and cost at scale for high-throughput applications such as billion-vector semantic search, recommendation systems, and mission-critical AI services.
By Craig Risi
In streaming, the challenge is immediate: customers are watching TV right now, not planning to watch it tomorrow. When systems fail during prime time, there is no recovery window; viewers leave and may not return. One and a half years ago, at ProSiebenSat.1 Media SE, we faced the challenge of scaling streaming applications for international users.
By Daniele Frasca
Target has deployed GRAM, a GenAI-powered accessory recommendation system for the Home category, using large language models to prioritize product attributes and capture aesthetic cohesion. The system helps shoppers find compatible accessories, integrates human-in-the-loop curation, and achieved measurable improvements in engagement and conversion.
By Leela Kumili
© 2025 Created by Michael Levin.
Powered by