Jim, this is your cue! From what you've described, we're all more involved in Computational Linguistics than we think. When a call is "recorded for training purposes", when you use voice activation, and more. Let's kick off with some basics. If you in Codetown have some definitions to add, now is the time.

Views: 200

Replies to This Discussion

Commercial applications of computational linguistics have been growing by leaps and bounds.  IBM created a new poster child for the field with their Jeopardy champion Watson, and most everyone has used Google Translate and/or Voice by now (and fewer yet will have escaped interacting with an Automated Voice Response system).  Commercial segments making significant use of NLP include web marketing, medicine, biomedical research, finance, law, and customer call centers.

In the most general terms, computational linguistics is applying computational methods to problems in linguistics.  Linguistics then is the study of human language in all its aspects.  Although it hasn't received a lot of press until recently, computational linguistics has been around pretty much since the development of the computer.  One of the first uses of digital computers (and a key impetus for their development) was in code breaking, which is an application of "compling" (I know, it looks like a typo for "compiling" but CL looks like Common LISP to me).  The Association for Computational Linguistics (ACL), the largest and oldest scientific and profssional society in the field, will hold its 50th annual conference next July.

Being such a broad field there are of course many specializations and various communities with differing objectives and vocabularies.  Folks primarily focused on engineering computer systems that process human language at a level deeper than simply character strings are generally under the Natural Language Processing (NLP) banner.  The commercial success of CL applications and the focus on some problems other than the traditional NLP ones (translation, text understanding, and speech recognition and generation) has spawned Text Analytics as another subfield that is closely associated with Business Intelligence (itself largely commercial application of machine learning methods).  Perhaps the biggest focus of Text Analytics has been on sentiment analysis, which assesses a speaker's attitude or mood in something they've said or written (we usually say "speaker" even when the medium is written or typed).  There are many businesses that use sentiment analysis on the web to find out what folks are saying about them and their products, in call centers for quality control, and in finance to predict future prices.  Applications in law and government include "e-discovery" and smart OCR systems.  Lastly, and far from leastly, is compling in the medical field and the specialized domain knowledge it calls for which is known as bioinformatics.  Bioinformatics may well be compling's "killer app" because of the tremendous opportunity to do good.  Answering technical questions for medical practitioners is the application IBM has targeted as Watson's "day job".

This is a big topic and I have lots I would like to say, so I intend to drop in here often.  So stay tuned!

~~~~ Jim White

 

On a similar note: This fall a colleague of mine informed me of a class being offered by two Standford professors. It is Introduction to Artifical Intelligence (ai-class.com).  I signed up for the course along with 138,000 other students.  It has been interesting to see some of the therories and formulas used to help the computer find the correct answer.  Prior to starting the class, I did not realize it is mostly related to statistics.  I just finished the midterm and will hopfully learn alot more as the course continues.   

Next semester Stanford is offering a wider variety of online courses. One of them is specifically on natural language processing:

 

http://www.nlp-class.org/

 

There are also some other courses that would make good follow-ups to the AI course.

 

Machine learning: http://jan2012.ml-class.org/

 

Probabilistic graphical models: http://www.pgm-class.org/ (These are the kinds of graphs you saw in the AI course - not about pictures)

 

Game theory: http://www.game-theory-class.org/

 

Excellent. Thanks, Eric!

Eric Lavigne said:

Next semester Stanford is offering a wider variety of online courses. One of them is specifically on natural language processing:

 

http://www.nlp-class.org/

 

There are also some other courses that would make good follow-ups to the AI course.

 

Machine learning: http://jan2012.ml-class.org/

 

Probabilistic graphical models: http://www.pgm-class.org/ (These are the kinds of graphs you saw in the AI course - not about pictures)

 

Game theory: http://www.game-theory-class.org/

 

RSS

Happy 10th year, JCertif!

Notes

Welcome to Codetown!

Codetown is a social network. It's got blogs, forums, groups, personal pages and more! You might think of Codetown as a funky camper van with lots of compartments for your stuff and a great multimedia system, too! Best of all, Codetown has room for all of your friends.

When you create a profile for yourself you get a personal page automatically. That's where you can be creative and do your own thing. People who want to get to know you will click on your name or picture and…
Continue

Created by Michael Levin Dec 18, 2008 at 6:56pm. Last updated by Michael Levin May 4, 2018.

Looking for Jobs or Staff?

Check out the Codetown Jobs group.

 

Enjoy the site? Support Codetown with your donation.



InfoQ Reading List

Swiggy Rolls Out Hermes V3: From Text-to-SQL to Conversational AI

Swiggy has released Hermes V3, a GenAI-powered text-to-SQL assistant that enables employees to query data in plain English. The Slack-native system combines vector retrieval, conversational memory, agentic orchestration, and explainability to improve SQL accuracy and support multi-turn analytical queries.

By Leela Kumili

Amazon S3 Vectors Reaches GA, Introducing "Storage-First" Architecture for RAG

AWS has announced the general availability of Amazon S3 Vectors, increasing per-index capacity forty-fold to 2 billion vectors. By natively integrating vector search into the S3 storage engine, the service introduces a "Storage-First" architecture that decouples compute from storage, reducing total cost of ownership by up to 90% for large-scale RAG workloads.

By Steef-Jan Wiggers

Presentation: From Confusion to Clarity: Advanced Observability Strategies for Media Workflows at Netflix

Naveen Mareddy and Sujana Sooreddy discuss the evolution of Netflix’s media processing observability, moving from monolithic tracing to a high-cardinality analytics platform. They explain how to handle "trace explosion" using stream processing and a "request-first" tree visualization, and share how to transform raw spans into actionable business intelligence.

By Sujana Sooreddy, Naveen Mareddy

Article: The Architect’s Dilemma: Choose a Proven Path or Pave Your Own Way?

Software platforms and frameworks act like paved roads: they accelerate MVP/MVA delivery but impose decisions teams may not accept. If the paved roads don't reach your destination, then you may have to take an exit ramp and build your own solution. Experiments are necessary to determine which path meets your specific needs.

By Pierre Pureur, Kurt Bittner

Things Software Developers Think They Don’t Need to Care about, But Can Impact Their Job

Holly Cummins gave a keynote at Goto Copenhagen where she urged developers to care about overlooked issues that shape their work. She warned of unintended consequences of design decisions, promoted systems thinking and statistical literacy, stressed mastering concurrency as hardware evolves beyond Moore’s Law, and mentioned the impact of AI on the job market.

By Ben Linders

© 2026   Created by Michael Levin.   Powered by

Badges  |  Report an Issue  |  Terms of Service